Some Results on Linear Codes over $\mathbb{Z}_4+v\mathbb{Z}_4$

نویسندگان

  • Jian Gao
  • Yun Gao
چکیده

In this paper, we study the linear codes over the commutative ring R = Z4 + vZ4, where v2 = v. We define the Gray weight of the elements of R and give a Gray map from Rn to Z2n 4 , which lead to the MacWillams identity of the linear code over R. Some useful results on self-dual code over R are given. Furthermore, the relationship between some complex unimodular lattices and Hermitian self-dual codes over R is given. Furthermore, the existing conditions of MDS codes over R is given, and the results show that there are no non-trivial MDS codes over R. Structural properties of cyclic codes are also discussed in this paper. As a special class of cyclic codes, quadratic residue and their extension codes over R are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$

Let $R=\mathbb{Z}_4+u\mathbb{Z}_4,$ where $\mathbb{Z}_4$ denotes the ring of integers modulo $4$ and $u^2=0$. In the present paper, we introduce a new Gray map from $R^n$ to $\mathbb{Z}_{4}^{2n}.$ We study $(1+2u)$-constacyclic codes over $R$ of odd lengths with the help of cyclic codes over $R$. It is proved that the Gray image of $(1+2u)$-constacyclic codes of length $n$ over $R$ are cyclic c...

متن کامل

Some results of linear codes over the ring $\mathbb{Z}_4+u\mathbb{Z}_4+v\mathbb{Z}_4+uv\mathbb{Z}_4$

Abstract: In this paper, we mainly study the theory of linear codes over the ring R = Z4 + uZ4 + vZ4 + uvZ4. By the Chinese Remainder Theorem, we have R is isomorphic to the direct sum of four rings Z4. We define a Gray map Φ from R n to Z 4 , which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over Z4. Furthermore, we study the MacWilliams identities of ...

متن کامل

Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$

In this paper, we have studied cyclic codes over the ring R = Z4 +uZ4, u = 0. We have considered cyclic codes of odd lengths. A sufficient condition for a cyclic code over R to be a Z4-free module is presented. We have provided the general form of the generators of a cyclic code over R and determined a formula for the ranks of such codes. In this paper we have mainly focused on principally gene...

متن کامل

Multivariable codes in principal ideal polynomial quotient rings with applications to additive modular bivariate codes over $\mathbb{F}_4$

In this work, we study the structure of multivariable modular codes over finite chain rings when the ambient space is a principal ideal ring. We also provide some applications to additive modular codes over the finite field $\mathbb{F}_4$.

متن کامل

Relative two-weight $\mathbb{Z}_2 \mathbb{Z}_4$-additive Codes

In this paper, we study a relative two-weight Z2Z4-additive codes. It is shown that the Gray image of a two-distance Z2Z4-additive code is a binary two-distance code and that the Gray image of a relative two-weight Z2Z4-additive code, with nontrivial binary part, is a linear binary relative two-weight code. The structure of relative two-weight Z2Z4-additive codes are described. Finally, we disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1402.6771  شماره 

صفحات  -

تاریخ انتشار 2014